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Introduction 
In this paper, we investigate the question of how many legal 8x8 Infinifield1 fields exist.  We 
wrote a computer program for this purpose and ran it on multiple machines over several weeks 
to produce an exhaustive list of such fields.  We here describe the results of the run and the 
lessons we learned from the process. 

Please see http://www.infinifield.com/ for more information about the game.  Our description 
here is limited to the key problem and the computer program we used to solve it. 

While there are plenty of distinct solutions to this problem, it is an interesting exercise to find 
one by trial and error.  One is easily discouraged, and indeed, we initially suspected that there 
would only be a handful of solutions.  We could not have been more wrong! 

What Sets Infinifield Apart 
There are many board games where creating the board is part of the game.  Almost all such 
games limit the placement of board components to some predefined grid.  The Infinifield rules, 
on the other hand, allow the components to be placed at arbitrary angles to each other and in 
three dimensions.  There are still a necessarily finite number of distinct strategically equivalent 
boards, but there are certainly an infinite number of visually distinct boards, and this fact drew 
us to the game and this specific task. 

The 8x8 Infinifield Problem 
An Infinifield field, for our purposes, is an arrangement of 24 blocks:  eight 1x1 white blocks, 
eight 1x2 yellow blocks, six 1x4 red blocks, and two 1x8 blue blocks.  The white blocks are 
special; the other colors do not matter.  In this investigation, we investigate fields where the 
blocks are restricted to (and fill) an 8x8 grid. 

Blocks in a field are said to touch if they share an edge or corner point. 

Besides filling the 8x8 grid, a valid Infinifield arrangement must also satisfy these two 
constraints: 

• No two white blocks touch one another. 

• No colored block touches more than two white blocks. 

                                                
1
 Infinifield® is a registered trademark of Infinifield, Inc., and is used with permission throughout this paper. 
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An example solution will help illustrate: 

 

Figure 1 

The first solution found by our program. 

 

Our goal is to identify the number of distinct, legal fields.  Rotations and reflections of a field are 
not considered distinct. 

Solving the 8x8 Problem 
The technique for solving the problem is standard to computer science:  implement an exact, 
backtracking exhaustive-search program to find all possible solutions by trying every possible 
combination in a controlled way. 

Such algorithms have a well-deserved reputation for bad performance, due to the potentially 
exponential number of combinations to consider.  The most important questions in designing 
such an algorithm are (1) how to organize the search, and (2) how to identify partial 
combinations that cannot be extended to a complete solution. 

The Core Dilemma 

This particular problem is harder to solve by exhaustive search than it might appear.  The core 
dilemma, as we eventually understood it, is this: 

• On the one hand, one would prefer to place the largest pieces first.  This ensures that no 
large, awkward piece is left over without a place to fit.  In this approach, the white blocks 
would go in last, in whatever spaces are left over after placing the other blocks. 

• On the other hand, the non-trivial constraints have to do with how the white blocks are 
allowed to touch other blocks.  This suggests placing the white blocks first so that these 
constraints can be used eliminate bad combinations earlier in the process. 

Each approach has probable merits, but we ended up using the latter.  We felt that it would be 
easier to restrict the colored block placement given the white blocks than it would be to try to 
anticipate which colored block combinations left no feasible arrangement of white blocks.  We 
may have been wrong:  here’s a tricky example. 

 

Figure 2 

If the three remaining white blocks must appear 
somewhere in the bottom three rows of the grid, 
can the grid still be completed according to the 
rules?  The answer is no, and working through 
the various cases highlights some of the 
difficulties associated with the strategy of first 
placing the white blocks. 

 

Much of the problem-specific strategy is related to resolving this dilemma and effectively ruling 
out bad combinations of white blocks.  Indeed, one key optimization was to use a separate and 
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streamlined program to generate all possible placements of the white blocks.  A second 
program then used the output of the first and applied the more complicated rules required to find 
placements, if possible, for the colored blocks. 

Problem-specific Techniques 

To decrease the run-time of the program to something manageable, we used the following 
problem-specific techniques: 

• We modeled the problem in terms of Thin Rectangles, an abstraction representing 
rectangles (upper left corner and lower right corner) which are one unit in either height or 
width.  For example, there are 56 horizontal and 56 vertical 1x2 Thin Rectangles that fit 
on the 8x8 grid.  The task then is to pick, of the 272 possible Thin Rectangle regions of 
an 8x8 grid, some subset such that: 

o Each square on the 8x8 grid is contained in exactly one selected Thin Rectangle. 

o The fixed number of Thin Rectangles of each size is respected (i.e. exactly six 
distinct 1x4 rectangles are selected). 

o The constraints with regard to white (1x1) Thin Rectangles are respected. 

• One usually solves this type of problem by placing the largest pieces (most awkward) 
pieces first.  We focus on the white blocks first, as described above.  After all eight white 
blocks are placed in a trial solution, we then continue with the blocks in decreasing order 
of size (blue, red, and finally yellow). 

• If, within the 8x8 grid, there is a square that touches three or more white blocks, then 
any block covering that square will violate a constraint.  Therefore, while placing the 
white blocks, we ensure that each space in the grid touches at most two of them.  
Adding this check significantly reduced the number of white block configurations that the 
programs needed to examine. 

• Imagine the 8x8 field as a checkerboard, with 32 red squares and 32 black squares.  
Since all of the colored blocks cover the same number of red and black squares no 
matter how they are placed, it follows that, in placing the white blocks on the field, 
exactly four must rest on red squares and four must rest on black squares.  Otherwise, 
the 8x8 field cannot be filled (this is known as a parity argument).  Adding this check also 
significantly reduced the number of white block configurations. 

• The same checkerboard argument made above also applies to the smaller regions 
created when one of the blue blocks divides the 8x8 field.  This allows us to eliminate 
otherwise valid placements of the blue blocks.  Note that this check (at least, in this 
simple form) would not apply to, say, a 4x16 field.  Specifically, the program verifies that 
there are as many white blocks on red squares as there are white blocks on black 
squares within subregions created by a blue block.  This significantly reduced the 
amount of backtracking the program performed. 

• The library we used for this problem (see below) supports the definition of symmetry 
constraints.  We used this to define constraints that prune potential solutions guaranteed 
to result in rotations or reflections of already discovered solutions.  While we can only 
save a factor of eight in the runtime by employing this technique, it was easy to 
implement and prevents us from having to code a post-processing step.  
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General Purpose Techniques 

Several general-purpose strategic decisions are also of note: 

• We used Haskell for our implementation, a very high-level language that also has an 
aggressively optimizing compiler.  See http://www.haskell.org/ for more information 
about Haskell, and http://www.haskell.org/ghc/ for more information about the Glasgow 
Haskell Compiler.  The high-level nature of the language resulted in less than 500 lines 
of code for the entire problem-specific module (including comments, pretty layout, testing 
assertions, and debugging features).  This compactness allowed us to focus on the task 
of representing the problem constraints rather than the details of managing the 
backtracking process, and made it quite easy to prototype and compare different models 
to one another. 

• We started by using a proven library for solving backtracking problems.  This allowed us 
to focus on the problem-specific tasks, and provided several general features we 
leveraged, such as symmetry breaking and 1-level probing.  The debugging features 
built into the library also helped us explore the search tree and discover additional 
problem-specific optimizations. 

• We implemented checkpoint-restart logic, so that a failed or aborted run could be 
continued rather than having to start again from scratch.  This allowed the run to 
continue over several weeks, and even allowed the program to be optimized and 
replaced with a newer version without losing past progress. 

• We manually implemented parallelism by using several computers and adjusting the 
start states so that the machines were exploring different sets of possible solutions. 

The importance of using a high-level language and a proven library can’t be overemphasized.  
The resulting agility allowed us to prototype, try different approaches, abandon bad ideas and 
tweak good ones, all with very little effort. 

Results 
The program ran on at least three computers over its lifetime, and in various incarnations, 
consumed more than six CPU-weeks.  The average configuration for a computer running the 
program was a Pentium 4 with 512 MB RAM and a single 2GHZ CPU running Windows XP and 
Haskell 6.4.  We estimate that the final, tuned program could generate all solutions from the 
beginning in two CPU-weeks. 

The program generated exactly 633,586 different fields.  Clearly, this is far too many to 
manually check, but all spot-checks of the results suggest that there are no duplicates and that 
each is a legal 8x8 Infinifield. 

Sample Solutions 
One hundred sample solutions are displayed in Figures 3.1-3.3 (at the end of the report).  You 
can see how the white squares closest to the upper-left corner slowly move across and down as 
the program progresses, indicative of the organizational strategy of examining possible 
placements of the white squares first. 

Note that many of the sample solutions have the two blue bars in the second and third row (or 
some rotation thereof).  Since the two resulting subproblems can be solved independently, this 
placement produces a wealth of different overall solutions. 
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Also, note that there are comparatively few solutions where no white square is in a corner.  
There are even fewer solutions where the four corners of the grid are neither white nor blue.  
The reader is invited to try to find such a solution before looking at the last sample. 
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Summary 
This problem turned out to be more subtle than expected!  Due to the size of the search space, 
we spent a lot of time tweaking and trying different things to make the search more effective.  
Four hours of thought and coding could easily save several days of run time. 

As with all computer-generated results, the solution count of 633,586 should be considered an 
estimate rather than an exact figure until someone reproduces the result independently.  
However, it is probably safe to say that there are well over 630,000 different 8x8 legal fields.  
This number, although finite, would probably take a lifetime to explore, even before branching 
out into 4x16 fields, three-dimensional fields, or non-grid-aligned fields! 

This exercise is a nice case study in language selection.  A program written in an imperative 
language would probably have executed much more quickly, but the implementation effort and 
lack of modeling agility would have been problematic.  The problem is too large to solve without 
non-trivial problem-specific techniques, and these techniques required significant 
experimentation and testing to discover. 
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with a strong interest in mathematics, computer science, and puzzles and games of all kinds. 
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Figure 3.1 – Sample solutions 1 - 35 
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Figure 3.2 – Sample solutions 36 - 70 
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Figure 3.3 – Sample solutions 71 - 100 

 


